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The fast dynamo problem for steady chaotic flows is approached by evolving
magnetic field numerically at zero magnetic diffusion. Two flows are used, an ABC
flow and a model flow constructed by patching simple flows together; both flows
possess chaotic webs. From smooth initial conditions the magnetic field evolves fine
structure in the chaotic regions of the flow because of exponential stretching and
folding. Evidence for constructive folding of magnetic field within the chaotic regions
is obtained: spatial averages of the magnetic field grow exponentially in time and
this process is robust to different methods of averaging. This constructive folding is
suggestive of fast dynamo action since the main effect of weak diffusion is to average
field locally and smooth out fine variations. The growth and behaviour of initial
conditions belonging to different symmetry classes is explored. In the case of the
model flow, the dynamo process is explained in terms of chaotic stretching and
folding together with cutting and pasting at hyperbolic stagnation points.

1. Introduction

It is now generally accepted that dynamo theory provides an explanation for the
existence and dynamical behaviour of solar and terrestrial magnetic fields (see, for
example, Moffatt 1978 ; Parker 1979 ; Krause & Réadler 1980) ; however, there remain
a number of outstanding questions. One problem is to understand why the solar
magnetic field evolves so rapidly, over a period of months for sunspots, or years for
the solar cycle (Vainshtein & Zeldovich 1972). This timescale is that of the
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628 A. D. Gilbert

convecting plasma in the sun, and is much shorter than the timescale for the diffusion
of magnetic field across the solar convection zone, which is of the order of millions
of years (Zeldovich et al. 1983). The apparent paradox is that diffusive processes must
be important in allowing field lines to reconnect in any dynamo model, and yet the
solar field evolves on a convective, rather than a diffusive, timescale. Dynamos with
this property have been called ‘fast dynamos’ by Vainshtein & Zeldovich (1972). The
resolution of the paradox is that convection tends to intensify the field and reduce
its scale, which allows diffusion to act more rapidly, smoothing out fine structure and
reconnecting field lines on small scales.

The fast dynamo problem then is to find examples of flows that are fast dynamos
and to understand possible fast dynamo mechanisms. The problem is most easily
approached within the framework of kinematic dynamo theory: one sets aside the
effect of the Lorentz force on the convecting fluid and studies the evolution of
magnetic field in a prescribed velocity field u (x, t) according to the induction equation,

0,B=Vx(uxB)+3V*B, (1)

with V' B = 0. The magnetic diffusivity is # and we are interested in the limit of weak
diffusion, 7 — 0, for a given flow field. This is equivalent to the limit of large magnetic
Reynolds number B, ; we use units in which the space-scales and timescales of the
flow u are of order unity and take R, = 1/5. If the flow is sufficiently complicated
and extended in space, it will generally support dynamo action (Roberts 1972), the
fastest growing magnetic field mode having a growth rate p, .. (7). The flow u(x,?) is
a fast dynamo if

lim Re ppax() > 0;

7—>0
the growth rate remains on an O(1) convective timescale in the limit of weak
diffusion. If the limit is zero, the dynamo is slow.

Consider setting the diffusivity, 5, exactly to zero so that magnetic field lines are
frozen in the fluid. If the flow u is chaotic, field vectors are stretched exponentially
and the scale of the field decreases exponentially without limit. For a flow in a
bounded or periodic domain, this stretching of field must be accompanied by folding,
a non-local effect that is difficult to quantify, yet is crucial in fast dynamos. The
reason is that if one now introduces very weak diffusion, it will tend to smooth the
field locally and the result of this smoothing process depends on the nature of the
folding that has taken place. If the folding is ‘constructive’ in the sense that largely
like-signed field is brought together, then the effect of diffusion in dissipating
magnetic energy is minimized. Therefore, at a heuristic level at least, the question of
whether a chaotic flow is a fast dynamo becomes a question of the nature of folding
in three-dimensional flows (see Dresselhaus & Tabor 1990).

The fast dynamo problem has been approached by the study of idealized models
and the numerical study of ‘realistic’ flows. We take a rather weak definition of a
realistic flow as one that lies in bounded or periodic three-dimensional space, and
stretches fluid elements by only finite amounts over finite periods of time; this
excludes examples of laminar fast dynamos in which fluid elements are literally torn
apart by singularities in the flow field (Soward 1987; Gilbert 1988). Among the
idealized models are examples of smooth flows on compact manifolds in which the
folding is always constructive (Arnold et al. 1981; Bayly 1986; Vishik 1989);
however, it may be impossible to realize these flows in ordinary space (Plante &
Thurston 1972). Other idealized models capture fast dynamo mechanisms which may

Phil. Trans. R. Soc. Lond. A (1992)
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Magnetic field evolution 629

be present in realistic flows; these include the stretch—twist—fold mechanism
(Vainshtein & Zeldovich 1972; Finn & Ott 1988, 1990) and stretch—fold—shear
mechanism (Soward 1987; Bayly & Childress 1988, 1989; Finn et al. 1991). There is
convincing numerical evidence for fast dynamo action in realistic unsteady flows
(Bayly & Childress 1988; Finn & Ott 1988; Otani 1989; Klapper 19926 ; Galloway &
Proctor 1992) and random flows (see, for example, Zeldovich et al. 1988 and
references therein).

In this paper we are concerned with realistic steady chaotic flows; it has been
suggested that these are typically fast dynamos (Finn et al. 1991). Studies have
largely focused on the ABC flows (Arnold 1965; Childress 1970):

u(x) = (Csinz+Bcosy,Asinxz+ Ccosz, Bsiny+ 4 cosx). (2)

This is a family of smooth periodic flows of maximal fluid helicity (Moffatt 1969)
given by three parameters, 4, B and C. Except in cases where one or more of these
parameters is zero, the flow is non-integrable and possesses regions of chaotic
streamlines mingled with ‘tubes’ of quasi-periodic streamlines (Hénon 1966 ; Dombre
et al. 1986). Dynamo action in certain non-integrable ABC flows has been studied
numerically for R, < 550 (Arnold & Korkina 1983; Galloway & Frisch 1986); the
results are perhaps suggestive of fast dynamo action, but as yet inconclusive. More
convincing evidence for fast dynamo action in a steady Kolmogorov flow has been
obtained recently by Galloway & Proctor (1992). Such numerical simulations are
expensive since the magnetic field is three dimensional and has structure down to
diffusive scales of O(R,?) (Moffatt & Proctor 1985).

Our approach is to follow the evolution of magnetic fields in examples of steady
flows with zero magnetic diffusivity. We identify constructive folding in the flow by
calculating the average field over fixed regions of space. If the average grows
exponentially it indicates constructive folding, which is suggestive of fast dynamo
action, since the principal effect of diffusion is to average the field over fine scales
(Finn & Ott 1988; Vishik 1989). This idea of replacing diffusion by averaging can be
made precise and proved in a number of idealized models (Bayly & Childress 1989;
Finn et al. 1991; Childress & Klapper 1991 ; Klapper 1992a, b). For a steady flow
containing a mixture of islands and chaos, there are difficulties in making a rigorous
link. In this paper we do not address this delicate issue directly, but simply seek
evidence for constructive folding in steady chaotic flows at zero magnetic diffusivity.

The paper falls naturally into two parts. In the first part (§§2-7) our aim is to study
magnetic field evolution in the simplest possible realistic flow. We construct a flow,
based loosely on a nearly integrable ABC flow (§2), by patching together simple
flows; this is called the ‘ABCS’ flow for brevity (§3). The flow is constructed in such
a way that particles and magnetic field vectors can be evolved in time using discrete
maps (§4) without approximation. This is numerically efficient and enables us to
study constructive folding and fast dynamo mechanisms in considerable detail
(§85-7). In the second part (§§8 and 9) we return to the original 4BC family (2) and
study the flow with 4 =B =C=1. Finally, in §10 we offer discussion and
conclusions. Some of the results in this paper have been reported in Gilbert &
Childress (1990) and Gilbert (1991).

Phil. Trans. R. Soc. Lond. A (1992)
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Figure 1. Streamlines of the ABC flow with 4 = B and C = 0, projected onto the xy plane.

2. A map for nearly integrable ABC flows with 4 =B=1,C <1

In this section we consider nearly integrable ABC flows with 4 = B =1 and
C <1 and derive a map giving particle trajectories. After applying a rotation, a
dilation and a translation to (2) with 4 = B = 1, the flow takes the form

u= (P, —P,, D/2)+0(cos (21/2),—sin (24/2),0), (3)

where @(x,y) =sinaxsiny. When C is zero the flow is integrable and @ is a
streamfunction for the motion projected onto the xy plane. The projected flow is
shown schematically in figure 1 and comprises a periodic array of cells. There is a
lattice of X-type, or hyperbolic, stagnation points, nn = n(n,,n,,0), where n, and n,
are integers, joined by a network of separatrices, or heteroclinic streamlines. When
C is increased from zero the z-dependent Beltrami wave perturbs the separatrices so
that they no longer exactly connect the stagnation points. The network of
separatrices broadens into a network of chaotic layers of width O(C), which form a
chaotic web (Zaslavsky et al. 1988 ; Beloshapkin et al. 1989). We shall derive a map
giving the motion of particles in this flow using standard methods in hamiltonian
systems (Chirikov 1979) and following from the discussion of Zaslavsky et al. (1988).
We shall see that this map is not entirely suitable for fast dynamo studies, but we
discuss it here as it forms a basis for the patched ABCS flow which we introduce in
§3 and use extensively in the paper.

To obtain equations for the motion of a particle in the web it is appropriate to scale
@ = O(C) for €' < 1. The velocity of the particle in the z direction is then O(C) and
it turns out that to leading order z is constant; the small changes in z may be
calculated later. We approximate the motion near to stagnation points, and along
the perturbed separatrices. Near to the stagnation point at the origin take
2,y = O(v/C) and @ ~ zy. The effect of the perturbation is negligible here, since the
streamlines are relatively far apart and the flow is slow moving. Thus on a trajectory
D ~ ¢y, where ¢, is an O(C) constant. The equations of motion for a particle are

and an orbit is given by r=x, y=-y, (4)
= /|golexp (t—t,), y = V/Ip,lsign (¢,)exp (t,—1),

where the subscript 0 gives values of @ and ¢ when the orbit crosses either of the lines
@ = ty. Near to the stagnation point (x,y) = (n,0), P = ¢, on a trajectory and

€ =T—|p,lexp (l,—1), y = /|py|sign (§)exp (t—t,),
where the subscript 2 denotes values when x—mn = +y.
Phil. Trans. R. Soc. Lond. A (1992)
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Magnetic field evolution 631

Near the unperturbed separatrix joining these two stagnation points, scale
x = 0(1) and y = O(C), so that @ x ysinx and a particle moves according to

Z=sinx, y=—ycosx—Csin(zy/2), (5)

the perturbation being important in this region. Since z is constant at leading order,
these equations give

x = 2arctan [exp (t—¢,)], y = cosh (t—¢,) (P, + (x—in)(— Csin (z4/2))),

where the subscript 1 denotes the values of @ and ¢ when @ = in. Matching the three
approximations relates values of @ and ¢ near the two stagnation points:

Po— P =—Cmsin(z24/2), t,—t,= %(T(¢2)+T(¢o)),

where 7(¢) = In (4/|¢]).

Now let us determine the small changes in 2z, which are important for the existence
of chaos in the flow; without these an orbit would always lie in a plane of constant
z and undergo periodic or quasi-periodic motion (see Soward & Childress 1990). Using
2 = 4/2® in the three regions and matching gives the total displacement in z as

2y =20 = 5(4(py) + 4(y)),

where 4(¢) = 1/2¢T(p). The displacement is O(CIn C), which is small, as assumed
(Zaslavsky et al. 1988).

All the other separatrices and stagnation points are treated in a similar way and
this leads to an approximate map for the motion of a particle from the neighbourhood
of any stagnation point to the next in the flow. Using carets to indicate new values
of variables we obtain the map:

6= ¢+npz;e>, £= 2+ 4(4(d) + (@),
= t+4T(P)+T(9)), (6)
ﬁ=n—|—e é= (e, xe)s1gn(¢)

The map describes a particle which moves from the neighbourhood of the stagnation
point mn in the direction e = +e, or *e, to the stagnation point nA. The values of
¢, z and t are those when the partlcle crosses one of the surfaces  —nn, = + (y—mn,),
which we refer to as Poincaré sections, and similarly for ¢ %, f and A. The functlon
p is defined by

p(z,e) = —Ce-(sin (24/2), cos (24/2),0). (7)

There is an immediate problem with this map as written: although it arises from
a solenoidal flow, it does not preserve fluid volumes. This can be seen in numerical
simulations, or shown informally as follows. At a point (¢, 2) on a section, an element
of area may be defined by displacements d¢, dz on the section; this can be extended
into an element of volume by carrying the area element along streamlines (assumed
transverse to the section) for a short time d¢. The volume of this infinitesimal element
is then V(¢, z) d¢ dz d¢ for some function V and must be conserved under the Poincaré
map for a solenoidal flow. The jacobian of the mapping must therefore take the form:

AB.2. /38,21 = V(d.2)/ V(.2
The jacobian of (6) cannot be written in this form and therefore is not the Poincaré
map of a solenoidal flow. This problem is easily rectified by noting that in working

Phil. Trans. R. Soc. Lond. A (1992)
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632 A. D. Gilbert

out the change in ¢, z was taken as an O(1) quantity ; to this order one could equally
well use £ or any quantity which differs from z by an amount of less than O(1). To
obtain a volume-preserving map, we instead write:

A

¢ = ¢+npz+34(8). e);

With this change the jacobian of the Poincaré map now has determinant 1 and so
corresponds to a solenoidal flow.

This map gives a description of how particles move from stagnation point to
stagnation point in the chaotic web. Some particles wander randomly around the
network of separatrices, whereas others have a systematic motion in a given
direction or remain trapped in one cell of the structure (Beloshapkin et al. 1989). Note
that the change of variables

Y =g+ple), Vy=4,
E=2+34(¢), T=t+¥(9),

gives a map that mcves particles from the centre of one separatrix layer to the next:

Y=yt é), vy=y+inple)

A

{=C+4Wy), T=1+Ty), (8)
A=n+e, ¢é=(e,xe)sign(¥y).

Here 3 and 7 are the values of @ and ¢t when a particle crosses a Poincaré section,
these now being placed across the middle of each separatrix layer; iy is the value
of @ near the next stagnation point.

This map moves particles in the model flow and its jacobian can be used to move
vectors (see §4). To find the field at a point one could follow the orbit back from that
point using the map, pick up the initial field and transport it forwards along the orbit
using the Cauchy solution. However, there are some difficulties in using the map for
numerical fast dynamo studies. If one follows a particle back in time it generally
lands somewhere between the Poincaré sections used in the map and its position is
only known in terms of matched approximations. If these are implemented in a
numerical code up to a given order in €, there will inevitably be errors at the next
order, which may introduce unphysical effects such as the cutting of magnetic field
lines, violating V:B = 0. This could make the unambiguous identification of
constructive folding and fast dynamo action difficult. Another effect of making the
above approximations is to change the qualitative structure of the flow. For example
in the real ABC flow with A = B =1 and C < 1 there are a finite number of discrete
hyperbolic stagnation points in each periodicity box (Dombre et al. 1986), whereas
in the approximation there are whole lines of stagnation points, a degenerate
situation.

3. Description of the ABCS flow

There are certain difficulties in using the approximate map (8), derived from a
nearly integrable ABC flow, for fast dynamo studies. Instead we construct a flow,
called the ‘ABCS’ flow, which is loosely based on the ABC flow with A = B =1,
C < 1. The flow is defined by taking the leading order approximations to this ABC
flow near to stagnation points and separatrices, and patching these together. Divide

Phil. Trans. R. Soc. Lond. A (1992)
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Figure 2. Structure of the model flow. The figure shows the projection on the xy plane of the
periodic array of regions labelled S and X. The Poincaré section across each S-region is marked by
a dashed line.

space into regions labelled ‘X’, containing X-type or hyperbolic, stagnation points,
connected by regions labelled ‘S’, standing for ‘separatrix’, as shown in figure 2. In
an X-region the flow is essentially the stagnation point flow (4), together with
vertical motion, while in an S-region the flow is given by (5) and no vertical motion.
Particle trajectories in this flow can be integrated analytically to give a map, which
can then be used to evolve magnetic field efficiently on a computer. Note that the
ABCS flow is not a rational approximation to any 4BC flow, but merely has certain
features in common.

Precise details follow; the regrettably cumbersome notation will be needed for
explaining in §4 how magnetic field is evolved in the flow. For a terse description see
Gilbert & Childress (1990). The flow, projected onto the xy plane (figure 2), has
stagnation points at nn = n(n,, n,,0) where n, and n, are integers. Centred at each
stagnation point lies an ‘X-region’, a square of side 2«, where « is a fixed parameter.
Joining the X-regions are ‘S-regions’, which we discuss first; these are rectangles of
the form:

S(n,e) ={x:k <e'(x—mn) <n—«,|(e,xe) (x—nn)| < «}.

The S-region S(n, e) lies between the stagnation points at nn and n(n+e). The unit
vector e gives the general direction of flow in the region as shown in figure 2 and so
e = te, if the sum of the components of n is even and e = t e, if the sum is odd. To
describe the flow it is convenient to introduce ‘local coordinates’ (Z,%,%,n,e) by
writing

x=Mq,(%,¥,% n,e) =nn+Te+je, x e+Ze,, 9)
so that

S(n,e) ={(x,7,z,n,e): k <T < T—k,|y| < «}.

The flow in S(n, e) is defined to be
at(a_:’ Y, 5) = (ag Sy(f> ?7)’ _af W(f’ :’7)+p(z_’ e)70)’

where Y(Z,y) = ysinZ and p(z,e) was defined in (7). Here ¥ is the unperturbed
C = 0 streamfunction which it is often convenient to use as a spatial coordinate. The

Phil. Trans. R. Soc. Lond. A (1992)
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634 A. D. Gilbert

function p represents the effect of the perturbing Beltrami wave C(cos(z4/2),
—sin (24/2),0) in pushing particles across the lines of constant ¥ in the 7 direction.
When a particle traverses an S-region the change in ¥ is 2¢, where

q(z.e) = n—«)p(z e),
and there is no vertical displacement. The time taken,

Ty = —21In (tan i),
is the same for all particles.
Now define X-regions X(n,e) by

X(n,e)={x:m—k <e'(x—mn) < n+k,|(e,xe) (x—nn)| < «},

where again e is restricted to be t+e, if n,+n, is even, and te, otherwise. Note that
X(n,e) is a square of side 2« centred at m(n+e), rather than na. In local coordinates
9),

X(n,e)={(z,7,z,n,e): n—k <T < m+k, |7 < «}.

The flow in an X-region is a stagnation point flow given by:
at(f> Y, z) = (ag W(f> :’7)’ _az W(fa ?7)» \/qu(fa g))>

where ¥Y(z,y) = y(n—) 7 is the unperturbed streamfunction in X(n, e). The constant
v = (sink)/k is defined to make ¥ continuous across the boundary between X- and
S-regions; so that the flow conserves volume. Note, however, that there is a
discontinuity in the angle of the streamlines (corresponding to a vortex sheet in the
flow), and thus a fluid element crossing the boundary is stretched instantaneously by
a finite amount. This discontinuity in angle could be smoothed out, so that this finite
stretching would take place smoothly over a short time, without affecting our results
in any significant way.
In an X-region a particle moves along a curve of constant ¥; it spends a time

Tx(¥) =y Inlyc*/ ¥
in the region and undergoes a vertical displacement of
A(P) = /29T (V).

Note that, as in the approximation to the ABC flow of §2, the ABCS flow is somewhat
degenerate, as in each X-region there is a line of hyperbolic stagnation points, each
with a neutral direction. The flow is now defined within X- and S-regions by two
parameters, C' and k. These are chosen so that the chaotic web is contained entirely
within X- and S-regions. Thus the flow need not be defined explicitly in the spaces
outside these regions (see figure 2).

The flow may be integrated to obtain a Poincaré map. First we define a two-
dimensional Poincaré section P(n,e) lying across the centre of each S-region S(n, e)
by

P(n,e) ={(z,7,z,n,e):x =in, —k < j < «};

these are shown by dashed lines in figure 2. The Poincaré map relates successive
positions and times when a particle crosses a section. If a particle crosses P(n,e) at
time ¢t = 7 with z = { and ¥ = v, this is recorded as (¢, {,7,n,e). The particle then
travels along S(n, e) and into X(n,e). Here it moves along some streamline ¥ =

Phil. Trans. B. Soc. Lond. A (1992)
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Figure 3. Streamlines of the model flow. In (a) the part of the Poincaré section P(0, e,) given by
x = im, || < 0.2and [z| < n/4/2isshown. Points are plotted where streamlines intersect this section,
modulo the periodicity of the flow. The box marked in (a) is given by —0.15 <3 < —0.05, 0.1 <
z < 1 and is enlarged in (b). The horizontal lines shown in (b) are given by A: —0.09 < ¢ < —0.07,
2=053;B: —0.12 <9 <—-0.09, 2=0.9; and C: —0.15 < ¢y < —0.14, z = 0.3. The boxes shown
in (b) are given by D: —0.09 < < —0.07,0.54 <2< 0.6;and E: —0.11 < ¢y <—0.09,04 <2<
0.45.

and turns left if ¢ > 0 or right if ¢, < 0. It enters another S-region and intersects
P( )at lﬁg%ﬁé) PP waga‘ranae’
where 'ﬁ ¢X (g’ I/IX = l/’ + Q(g’ e);

{=(+AWy), f=T+T¢X) (10)

n=n+e, é=e,xe)sign(Yy).
Here iy is an intermediate variable, the value of ¥ in the X-region, and

T(Wy) = Ts+ Tx(Yx).

This map is the same as that derived for the ABC flow (8) in §2, except that inp is
replaced by ¢, and the functions 7' and 4 are defined differently. By iterating this
map particles may be moved efficiently and accurately from section to section and
by using the detailed structure of the flow the exact position of a particle may be
determined at any time.

For all our numerical studies C = 0.1 and « = 4/0.5. The Poincaré map contains
information about the motion of the particle on the large-scale lattice, given by n, as
well as the motion on small scales given by ¥, ¢, 7 and e. To give a picture of the
small-scale structure we identify all points modulo the periodicity of the flow and
plot part of the Poincaré section P(0, e,) in figure 3a. There are three types of orbit
visible; examples are labelled (1), (2) and (3). The orbit (1) undergoes a spiralling
motion and is confined to just one cell in the network; it is essentially a slightly
perturbed streamline of the C' = 0 integrable system. However, an orbit such as (2)
lies in the chaotic web formed by the perturbed C = 0 separatrices. It is chaotic and
appears to fill areas of space on the section. On large scales it wanders around the
lattice of S- and X-regions in a chaotic manner. The orbit (3) lies inside the web but
is quasiperiodic, tracing out an island on the section, while on large scales it has a
persistent motion through the lattice.

Phil. Trans. R. Soc. Lond. A (1992)
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4. The Cauchy solution

When the magnetic diffusion in the induction equation (1) is zero, a magnetic field
evolves according to the Cauchy solution:

B(x,t) = 0x/0x," B(x,,0). (11)

Here x,(x, ) is the initial position of the fluid element which lies at x at time ¢. The
Poincaré map moves particles from section to section through the flow; however,
generally a particle will not lie on a Poincaré section at time 0 or ¢ and some
interpolation is needed. Suppose, then, that a particle crosses P(n, e) at position and
time (¥, & 7,n,e). Provided |t—7| < 7%, so that it is still in S(n,e) at time ¢, its
position at this time is given in local coordinates by

('sz )=M(If}9 'ﬁ?‘g»"',n,e),
where Z=alt—7), F=b{t—T1)c(},{ t— z=2¢,
with a(t) = 2 arctan [expt], b(l) = cosht,

C(’ﬁ, g’ ¢ e) = ¢+ (a(t) _%n)p(é? e)'

Again consider motion from x,; to x over some period of time ¢, and suppose that
both x, and x lie in S-regions; there are trivial modifications if one or both of these
points lies in an X-region, which are summarized in Appendix A. Then

x(xy) =M, oMfpo(Mpp)" o (M) o(Mep)™ (%), (12)

where o means the composition of maps. Essentially we move the particle from x, to
the nearest Poincaré section, iterate Mppn times to move it from section to section,
and obtain its final position.

Differentiating (12) at fixed time ¢, using the chain rule, gives the jacobian 0x/0x,
as the product of jacobians of maps:

0x/0xy = Jop, S (Tpp)" (JEp) ' (o) (13)

(whose arguments are omitted for brevity). The jacobians of the maps M{), and M,
are

\./

0 0 —a
J(t) _ a(‘T g B b b / _ 1 _ b/_
LP = o, &, 7) p'(@—3m) 4 P

0 1 0
e, —e, 0
) Oz, y,2) * v
. ’0L2W=(‘3 5 )

where a prime denotes the derivative of a function with respect to its argument,
e,=ee,ande, =e-e,.
The jacobian of the Poincaré map Mpp is

. 1+q/'/A/ q/_l_q/*/(l_'_qldl) 0
: — A/ 1+q/A/ O

o, &%)
Tep = 5 ¢
I g7 q

s o

(with § = ¢( § é), etc.). This jacobian transports vectors from section to section. Since
Phil. Trans. R. Soc. Lond. A (1992)
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a vector can be thought of as joining two close particles carried in the flow, the
difference in time and position when they intersect a section give the vector com-
ponents in a certain basis. Formally, at any point (x,y,2) = M., o Mu(y, ¢, 7,1, e)
in an S-region, we can change basis by defining:

(B,/nta B‘r) = a(wa C’ T)/a(x’ Y, Z) ’ (B:mBy’Bz)
= (JEp) " o)™ By, By, By). (14)
With this choice of basis at each point the Cauchy solution (13) becomes
(BW’BQ B-r) (x,8) = (JPP)n ’ (Bynt, Br) (xo’ 0).

These components are simply multiplied by the jacobian J,, as the vector is carried
from section to section by the flow. The meaning of the components is evident in the
case when x lies on a section P(n,e,). Then B= B e, + B,e,+ B, e,, where e, =e,,
e, =e,and e, = —e,—pe, = —u. Thus B, is the component of field along streamlines
and represents the difference in time between the intersections of the two close
particles; B, and B, are transverse components which corresponded to the difference
in position between the intersections. At general points these components are given
by carrying the field, frozen in the flow, to the section and then resolving along e,
e, and e, ; similar methods are used in Soward (1990).

Certain features of the jacobian J,, arise because the flow is steady. Under
multiplication by Jpp the component of field along streamlines, B,, is conserved in
the absence of transverse field components B, and B,. Generally all three components
are present and under the jacobian B, field is generated from transverse field, because
of shearing in the flow, but not vice versa. The evolution of the transverse
components can thus be considered independently of B, ; these will generally grow
exponentially because of chaos in the flow. The component B, along streamlines is
‘slaved’ to these transverse components, and is thus of secondary interest. In our
numerical study we concentrate on the transverse components for this reason, and
also because it is difficult to calculate space averages of the B, component. This is
because the term 1" = 1/[) x| in Jpp, which represents the conversion of B, to B, is
large when iy = 0. There is a thin sheet of very strong B, field thrown off each row
of stagnation points. The flux sheet follows the unstable manifold of the stagnation
points and in the sheet the peak B, field grows exponentially in time, while its scale
decreases exponentially. This makes it difficult to resolve space averages of B,
accurately. However, since the exponential stretching at the rows of X-points
generates only B, field and not transverse field, it turns out that it is not necessary
to resolve the sheets to measure average transverse fields accurately. Thus although
B, is slaved to the transverse components, it is badly behaved, and we therefore focus
on the transverse components, in particular the vertical field, B, = B,. Note that this
slaving only occurs when there is no diffusion, as one effect of diffusion is to generate
transverse field from B, field ; indeed this process is important in certain laminar fast
and ‘nearly fast’ dynamos (Soward 1987; Gilbert 1988).

5. Numerical results

A code was written to follow the evolution of a magnetic field in the ABCS flow
using the Cauchy solution (11) for zero magnetic diffusion. We study the magnetic
field structure on the Poincaré section P(0,e,). The flow here is largely in the e,

Phil. Trans. R. Soc. Lond. A (1992)
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638 A.D. Gilbert

direction and sweeps field through the section. To find the field at a point x on the
section at time ¢, the orbit through this point is followed backwards in time, by
inverting (12) if x, lies in an S-region, or (A 1) otherwise. At the same time the code
accumulates the product of jacobians in (13) or (A 2) and finally calculates B(x,t)
from B(x,,0) by (11). Note that the code uses the analytical calculation of jacobians
in §4; so the only numerical errors arise through round-off. The great advantage of
using the Cauchy solution is that one need not evolve the full three-dimensional
structure of the field, but only follow orbits back from points of interest. Furthermore
the flow is steady and so to find the magnetic field at x for several different times,
one need only follow a single orbit from x.

One check of the correctness of the code is to compare the calculation of the
jacobian 3x/0x, by the code with a finite difference approximation obtained by
following nearby trajectories. This test of the compatibility of the motion with the
jacobian verifies the analytical calculations of §§3 and 4, as well as their numerical
implementation. Another test is to verify Stokes’ theorem:

fB-dS:f A-ds, (15)
z

ox

where X' is a fixed surface, and 4 is a vector potential for B. In a certain gauge the
vector potential is transported in the flow by:

A(x,t) = (0x,/0x)*- A(x,,0)

(Roberts 1967). Equation (15) was verified for several surfaces 2 by evolving both 4
and B in the flow up to moderate times.
Figure 4, plate 1, shows pictures of magnetic field evolution in the ABCS flow. The
initial condition is
B(x,0) = (sin (24/2), —cos (24/2), 0) (16)

and we represent the vertical magnetic field B, on parts of the section P(0,e,).
Because of the exponential stretching of field in the flow there is a large variation of
B, on the section and so a logarithmic scale is used: the quantity

F(B,) = sign (B,) max (In|10B,], 0)

is plotted linearly on the colour scale, which runs from —F_ . (blue) to F,,. (red),
where F, .. = max |F(B,)| and the maximum is taken over all points in the picture at
a given time. A positive B, component is shown in red, and negative in blue; weak
or zero field is in the centre of the scale, being light blue/green. In figure 4 a—c the field
is shown on = = in, |2| < n/4/2 and || < 0.2, corresponding to figure 3a, at times
t = 20, 50, and 90. As time progresses the structure of regular islands and chaos visible
in figure 3a becomes apparent in the magnetic field. The weakest fields lie in the
islands within the chaotic web (see orbit (3) of figure 3a). Layers of strong, fine-scaled
field pile up in the chaotic regions of the web (orbit (2) of figure 3a); these fields grow
exponentially because of chaotic stretching (albeit fairly weak). Outside the web
(orbit (1) of figure 3a) bands of field form because of persistent vertical shear. These
fields are initially fairly strong (figure 3a—c); however, they only grow linearly and
eventually become insignificant compared with the field in the chaotic regions.
There is also evidence of constructive folding. At ¢ = 20 (figure 4a) there is mostly
positive field (red) at the top and bottom of the picture, and negative field (blue)

Phil. Trans. R. Soc. Lond. A (1992)
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i (]

Figure 4. Evolution of magnetic field from the initial condition (16). In (a—c) the area of
P(0,e,) shown is that depicted in figure 3a while in (d—f ) it is that in figure 3b. The vertical
magnetic field B, is coded as described in the text, with positive B, shown in red and
negative in blue. In (a) ¢ = 20, (b) t = 50, (c) t =90, (d) t = 90, (e) t = 130 and ( f ) ¢ = 180.
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16
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Figure 5. Mean vertical magnetic field B, with the initial condition (16) plotted against time. (a)
The average is taken over the line A of figure 3b; the average over 2!® points is shown by the solid
line, and over 2'" points by the dashed line. (b) The average is taken over the line B of figure 3b;
2% and 2 points are used for the solid and dashed lines respectively.

mostly in the middle, whereas at ¢ = 50 the positive field is mostly in the middle and
the negative field at the top and bottom. Note, particularly for ¢ = 20, that the field
has a distinctive structure of blue or red ‘blobs’, separated by curved regions of finer
scale. The different blobs correspond to streams of fluid that reach the section by
different routes through the lattice of X- and S-regions, while the curved regions
separating the streams are sheets of fine-scale field stretched along the unstable
manifolds of rows of X-points. This is suggestive of a possible dynamo mechanism,
namely that constructive folding is achieved by the action of X-points in dividing
and recombining streams of fluid (see §7). We have also followed magnetic fields in
the real ABC flow (2) with 4 = B = 1 and ' = 0.01, and observed similar constructive
folding.

The structure of the magnetic field at ¢ = 90 shown in figure 4¢ is poorly resolved ;
so figure 4d—f show a smaller region of the section, which is that of figure 36, at t =
90, 130 and 180. Again there are fine layers of field piling up in the chaotic regions,
and evidence of constructive folding taking place. For example, in the chaotic region
seen towards the right of figure 36 the field in figure 4e is predominantly positive,
while in figure 4f it is mostly negative. '

To quantify the constructive folding we calculate the mean magnetic field
component, B,, averaged along a line lying in the section and cutting across layers
of field. The line taken is that labelled A in figure 3b; its precise position is given in
the figure caption. Figure 5a shows In|B,| plotted against time. There are two curves
shown; for the solid curve 2'® evenly spaced points were used to calculate the
average, while for the dashed curve half as many were used. The two curves virtually
coincide over the whole range (except near zero crossings of B,), showing that the
field is well-resolved. There is clear exponential growth of the average field, together
with oscillations; between peaks the sign of B, changes, giving characteristic
downward spikes in the curve. The period of the oscillations is approximately 21.6;
as a comparison, a particle in the chaotic region spends, on average, 4.5 time units
between crossing Poincaré sections.

Similar growth and oscillations are obtained when averaging over lines in other
chaotic regions for this initial condition. Figure 5b shows the growth of B, averaged
over line B of figure 3b. The growth rate of B, is approximately 0.018; this may be
compared with the growth rate of |B,|, which is approximately 0.021. These two
growth rates are fairly close, indicating that the folding action of the flow is efficient
in bringing together like-signed field, and there is relatively little cancellation in
calculating the average.

These results have been checked in several ways and appear to be robust. First, the
same results are obtained using single precision and double precision arithmetic.

Phil. Trans. R. Soc. Lond. A (1992)
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0 400 800

Figure 6. Mean vertical magnetic field B, with the initial condition (16) plotted against time. For
the solid line the average is taken over 250 points lying in the area marked D in figure 3b. For the
dashed line the average is taken over 100® points lying in the area E of figure 3b.

|
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0 80
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Tigure 7. Mean z-directed magnetic field B, with the initial condition (16) plotted against time.
The average is taken over the line A of figure 3b; the average over 2'® points is shown by the solid
line, and over 2'” points by the dashed line.

Secondly, the growth and oscillations obtained are independent of the precise
location of the line within a chaotic region; so the growth observed is not a result of
‘edge-effects’. Line segments of shorter lengths were also used; these give similar
behaviour, although after a longer transient. Furthermore similar results are found
when averaging over areas in the section ; the solid line in figure 6 shows the average
field over the box D of figure 3b, and agrees in detail with figure 5a in which the
average is taken over the nearby line A. The dashed line in figure 6 shows the average
over the box marked E in figure 36 and lies in an integrable region. There is a steady
decay of field here. Note that since the flow sweeps field across the section, averaging
B, over an area and then over an interval of time corresponds to averaging B, over
a volume in the flow. Thus our results imply that the average magnetic field in a fixed
volume in the flow is growing exponentially in time and oscillating ; this gives clear
evidence of constructive folding in the 4BCS flow.

Note that averaging over lines is natural in a steady chaotic three-dimensional
flow because locally there is a contracting direction, an expanding direction and a
neutral direction (along streamlines). A field will develop fine structure only in the
contracting direction and it is here that the bulk of the cancellation of flux will occur.
In the other two directions the variation of field is relatively weak and so there is
little further cancellation. Thus taking averages over lines cutting across the fine
structure in the magnetic field seems sufficient to indicate growth of field averaged
over areas and volumes.

In §4 we argued that the component of field along streamlines B, = —B_ is more
difficult to resolve numerically than the transverse components B, = —pB, + B, and
B, = B,. This is confirmed in figure 7, which is similar to figure 5a, except that the
average x-directed field B, is plotted. This field component is resolved accurately
only up to t & 35.

Phil. Trans. R. Soc. Lond. A (1992)
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100 200 300

t

Figure 8. Mean vertical magnetic field B,, with the initial condition (17), plotted against time.
The average is taken over the line A of figure 3b; the average over 28 points is shown by the solid
line, and over 2'7 points by the dashed line.

6. Symmetries of the ABCS flow

Not all initial conditions lead to the same clean growth as that seen in figure 5a
for (16). Figure 8 shows the growth of the average field on the line segment A of figure
3b for the superficially similar initial condition

B(x,0) = (cos (24/2), sin (24/2),0). (17)

However, in contrast to figure 5a there is very weak growth and it is only possible
to follow B, accurately up to ¢t ~ 300 using 2'® points in the average. These two
observations are connected, because the weaker the growth, the more cancellation in
calculating the average, and the greater the number of points required to compute
the average at a given time. The weak or non-existent growth for this initial
condition does not, of course, invalidate our evidence for fast dynamo action in the
ABCS flow: the induction equation is linear and the growth of a general initial field
will soon be dominated by fast-growing fields such as that shown in figure 5a.
However, the discrepancy between figure 5a and figure 8 requires some discussion.

A key to understanding the results of our numerical simulations comes from an
examination of the symmetries of the ABCS flow. If the magnetic diffusion is non-
zero, eigenfunctions and eigenvalues of the induction equation can be classified
according to their symmetry properties (Arnold & Korkina 1983; Arnold 1984). In
the absence of diffusion eigenfunctions can only exist in some weak, distributional
sense (Bayly & Childress 1989; Finn & Ott 1990; Childress & Klapper 1991).
However, magnetic fields can still be classified depending on how they transform
under the symmetry group, and generally fields of different symmetry have unequal
growth rates. This appears to be the explanation for the difference in growth rates
between figure 5a and 8.

The flow is periodic in space and we shall always identify points modulo the vectors
(m,m,0), (t, —=,0) and (0,0, 4/27); so that the flow and field lie on a 3-torus and we
can abbreviate P(n, e) as P(e). Having made this identification, the symmetries of the
flow form a group isomorphic to the symmetry group of the square. The group has
generators r and s satisfying r* = s> = ¢ and srs = r®, with

rx)=(M—y,x,2—n/24/2), s(x)=(x, —y, —z).

The symmetry r is a rotation of a quarter-turn about the axis x =y = 3w and a
translation by a quarter-period in the z direction. The symmetry s is a half rotation
about the axis y = z = 0, which rotates the Poincaré section P(e,) of figure 3a about
its centre. The ABC flow (3) possesses the same symmetries. Note that if in addition
one allows a transformation to reverse the direction of time, there are further

Phil. Trans. R. Soc. Lond. A (1992)
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Table 1. Character table for the symmetry group of the ABCS flow

x(@) @ {s, 7%} {rs,r’s}
I 1 1 1 1 1
11 1 1 1 -1 —1
111 1 1 -1 1 —1
v 1 1 -1 —1 1
A\ 2 -2 0 0 0

symmetries of the flow such as the reflectional symmetries visible in figure 3a
(Dombre et al. 1986). These, however, are not relevant to our study, which involves
an initial-value problem.

An element g of the symmetry group also transforms a magnetic field B (taken to
have the same periodicity as the flow) to give a field g[ B], using the Cauchy solution
(11); the generators act as follows:

(T[B]) (X) = ( —Bva:c’ Bz) (T_lx)a
(s[B]) (x) = (B, —B,, —B,)(s"'x).

Given a general magnetic field, the action of the group generates eight linearly
independent fields spanning a vector space L. Fields in L are mapped into each other
under the group action, and this gives the regular representation of the group.
Within this eight dimensional vector space there are minimal subspaces left
invariant by the group; these form irreducible representations of the group and give
different symmetry classes of magnetic fields (for background see, for example,
Hamermesh 1962). The group has five representations, which we label I to V; there
are four one-dimensional representations I-IV and one two-dimensional rep-
resentation V. The one-dimensional representations occur once in the vector space L.
The fields

B' = B+r[B]+7*[B]+ 7% B]+ s[B]+rs[B]+r*s[B]+rs[ B],
B = B+ 7[B]+*[B]+ 7} B]—s[B]—rs[B]—rs[B]—rs[ B],
BY = B—y[B]+ ¥ B]|—r[B]+s[B]—rs[B]+r?s[B]—r3s[B],

BY = B—r[B]+7* B]—r’ B]—s[B]+rs[B]—r%s[B]+r%s[B],
are simply multiplied by a factor y(g) when a group element g is applied to them; the
values of x(g) for different ¢ and representations are given in the character table 1
(Hamermesh 1962). For example, the fields B' and B™ are even under s, while BY
and B are odd. We postpone discussion of the two-dimensional representation V

until §7.
Now the reason for the different growth rates seen in figures 5a and 8 becomes
clearer. The initial field (16) of figure 5a belongs to representation IV, while the

initial field (17) of figure 8 is in representation III. Examples of initial fields from
representations I and 11 are

B(x,0) = (cos (24/2), —sin (24/2),0) (18)
and B(x,0) = (sin (z4/2), cos (z4/2),0) (19)

respectively ; the growth in B, along the line A of figure 3b for these two initial
conditions is shown in figure 9. For the initial field (18) there is very weak growth,
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t t

Figure 9. Mean vertical magnetic field B,, with the average taken over line A of figure 3b, plotted
against time; an average over 2'® points is shown by the solid lines, and over 2!7 points by the
dashed lines. The initial condition is given by (18) in (a) and (19) in (b).

0 200 400 600

t

Figure 10. Mean vertical magnetic field B,, with the average taken over line A of figure 3b, plotted
against time; an average over 2'® points is shown by the solid lines, and over 27 points by the
dashed lines. The initial condition is given by (20).

which is difficult to resolve (figure 9a), while for (19) there is well-resolved growth
with oscillations (figure 90). We studied several initial conditions belonging to each
representation and always find clear growth for fields from representations II and IV,
which are odd under the rotation s, with growth rates of 0.016+0.001 and
0.018 +0.001 respectively. For representations I and III, which are even under s, we
consistently obtain noisy behaviour and weak or no growth.

What is perhaps surprising is that although the growth rates appear to be
approximately the same for different fields of the same representation, the
frequencies of oscillation can be different. As an example figure 10 shows the growth
from the initial condition

B(x,0) = (coszsiny, —sinzcosy,0) (20)

which belongs to representation IV. There is growth with oscillations; whereas the
growth rate is approximately the same as that for the initial field (16) (see figure 5a),
the oscillations have about three times the frequency. This is somewhat surprising:
if the magnetic diffusion is non-zero, an initial condition from a given representation
ultimately grows as the most unstable eigenfunction of that representation. However,
in the absence of diffusion, when eigenfunctions exist only in a weak sense, if at all,
it appears that an evolving field retains some memory of its initial condition. Initial
spatial variations are not entirely wiped out and, as the field is amplified in the flow,
these are observed as oscillations when the field is swept through a Poincaré section.
Indeed the initial field (20) has more variation than (16) along streamlines, as may
be verified by plotting B,(x(t)) as a function of time for a chaotic streamline, x(¢).
Note that a similar situation occurs in the two idealized dynamo models to be
introduced in §7 and those discussed by Finn et al. (1991, §3), in which fields with
different spatial periodicities have the same growth rate. This degenerate situation
would be changed by weak diffusion, which would tend to reduce the growth of fields
with more spatial variation and thus lead to a loss of memory of the initial condition.

Phil. Trans. R. Soc. Lond. A (1992)
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Figure 11. Mean vertical magnetic field B,, with the average taken over line A of figure 35, plotted
against number of iterations, 7/7,; an average over 2% points is shown by the solid lines, and over
214 points by the dashed lines. The initial condition is given by (16).

Our results suggest that in the limit of weak diffusivity 7 there may be a number of
eigenvalues whose real parts tend to a single positive fast dynamo growth rate, but
which possess distinct imaginary parts corresponding to differing degrees of spatial
structure. This seems to correspond to the condensation of eigenvalues discussed by
Vishik (1989, §2).

7. Dynamo mechanisms

We have seen constructive folding and the exponential growth of averaged field in
the ABCS flow, suggesting fast dynamo action. In this section we discuss the dynamo
mechanism and how one might model it. The discussion is somewhat tentative in
view of the complexity of the ABCS flow, and in the absence of any kind of detailed
theory. The mechanism is related to the stretch—fold—shear dynamo (Bayly &
Childress 1988, 1989 ; Finn et al. 1991); we have not identified any stretch—twist—fold
mechanisms (Vainshtein & Zeldovich 1972) in the flow.

First consider the action of the rows of hyperbolic, X-type, stagnation points in
the flow. Two distinct effects may be identified. The first ‘ cut and paste’ effect is that
the two streams of fluid impinging on an X-point are divided and recombined into
two streams which part in opposite directions. Thus two particles, initially close
together, can be separated by an X-point, and take different paths through the
lattice; this effect may be seen in figure 4. The second ‘shear’ effect is that fluid
elements are sheared out along streamlines, since particles which pass close to an X-
point are delayed for long periods of time. Thus particles which take the same path
through the network of S- and X-regions are separated by this process. Because of
the shearing strong B, components of field are generated very close to X-points;
however, these are decoupled and can be ignored, as discussed in §4.

To understand the role of these two effects we study magnetic field evolution in a
modified flow, for which the shear effect is absent and the only effect of the X-points
is the cutting and pasting of streams of fluid. Call this the ABCS 1 model for brevity.
Suppose that every fluid element traverses an X-region in a fixed time 7,, while
undergoing the same vertical displacement as before. Then particles can be followed
from section to section by i 1ncreas1ng 7 by 7, and iterating the Poincaré map M, (10)
taking (¥, &, n,e) 1,& ¢ n, é) without further changing 7. At the same time the
transverse field components B, and B, are evolved using the appropriate sub-matrix
of Jpp. The modified flow could be constructed explicitly by replacing the flow in an
X-region by an accelerated corner flow, as used by Soward (1987). Note that the
modified flow is not continuous; each section maps onto two other sections in a finite
time 7,, and so fluid elements are torn apart at the corner. Figure 11 shows the
evolution of B,, averaged along the line A of figure 35 for the initial condition (16),
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Figure 12. Model stretch—fold—cut—paste dynamo illustrated for a field from one of representations
Ito IV. (2) The section P®(e,) is divided into four quadrants, each with the uniform initial vertical
field shown. The initial field on the other sections is given by applying » and multiplying by p to
give P¥(e ) in (b), P©(—e,) in (¢), and P*(—e,) in (d). () In the cut—paste step, the field on the
left side ( < 0) of P¥(e,) is carrieq to the left side of P?(e,), and the field from the right side of
PO(—e,) to the right side of P%(e,). (f) In the stretch-fold step the baker’s map shown
schematically is applied to P®(e,), and similarly for the other sections. (g) The resulting field on
P®(e,) is shown.

as a function of the number of iterations, 7/7,, of Mpp. There is clear exponential
growth of the average at a rate of about 0.090/7,. Given that a particle in the chaotic
region spends, on average, 4.5 time units travelling between sections, this may be
translated crudely into a growth rate of 0.020 per time unit by taking 7, = 4.5. This
is close to the growth rate of 0.018 observed in the ABCS flow for this initial
condition, and suggests that the shearing effect of the X-points is relatively
unimportant in the dynamo mechanism. The two crucial effects seem to be the chaos
in the flow, which gives exponential stretching, and the cutting and pasting at X-
points. One could call this a stretch—fold-cut—paste dynamo. The mechanism is
broadly similar to the stretch—fold—slide dynamos discussed by Finn et al. (1991) and
Klapper (1991). Note that the cutting and pasting at the X-points is essential
because a continuous map from section to section would fail to be a dynamo (Cowling
1934 ; Zeldovich 1957).

We now sketch a crude model of a stretch—fold—cut—paste dynamo, called 4BOS
2, which is based on baker’s maps (Finn & Ott 1988). This is intended to illustrate
how such a dynamo might operate rather to model the ABCS flow in any
detail ; however, the model and the flow turn out to have a number of features in
common. Like the ABCS 1 model, the map takes field from section to section; we
take the chaotic part of each section to be given by the rectangle, 0 < || < ¥, and
|2l < /A/2 = z,. We demand that the ABCS 2 map have the same symmetries as the
ABCS flow and for simplicity take an initial magnetic field B belonging to one
of the representations I to IV; so that s[B]=o¢B and 7[B]=pB with ¢ =+1
and p = + 1. For the initial field, divide the section P (e,) into four quadrants (figure
12a); take the initial field to be uniform and vertical in each quadrant and to be
consistent with s[B] = o B, as shown in figure 12a. Here the superscript in P®(e,)
denotes the iteration number. The field on the other sections is obtained by
repeatedly applying the symmetry » and multiplying by p, as shown in figure 126—d.
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The model dynamo map comprises two operations, cut—paste and stretch—fold. First
model the cutting and pasting action of the row of X-points at the origin. At iteration
m =1, after the cut—paste operation, the field on the left side (i < 0) of P®(e,) is that
which was on the left side of P”(e,) (figure 12b) at iteration m = 0, while the field
on the right side of P®(e,) comes from the right side (1 > 0) of P©(—e,) (figure 12d).
The field resulting after this cut and paste operation is shown in figure 12e. Formally
let B, (i, 2,e,m) denote the vertical field on P™(e) at iteration m for a field of any
symmetry ; then the cut—paste operation is given by

B,(fr,z,e,m+3) = B,(, 2, (e X e,) sign (), m).

In the second operation we model the stretching and folding by the chaos in the
flow. This is most easily achieved using a baker’s map, although in the actual flow
the stretching is much weaker. The baker’s map chosen must be invariant under the
symmetries, in particular under s, which rotates the section P(e,) by m about its
centre. The simplest map with this property is shown schematically in figure 12f.
Applying it to the field in figure 12e gives the field at iteration m = 1 on P®W(e,)
shown in figure 12¢g. Formally the baker’s map on the section P(e,) is given by

2B (¢0+2¢ 2%, ez’m+ ) z > O,lﬁ<0,
—2B, (Y =2y, 20— 32, €,, m+3), 2> 0,9 >0,
B2, e,,m+1) = W= 22— e Mot v
z( ¢0+2¢’%27ez’m+%)7 Z<O,1ﬁ>0,
—2B, (=, —2y, —z—§z,€,,m+}), 2<0,¥ <0.

We require that the stretch—fold map commutes with » as well as s, and this
determines similar baker’s maps that are applied on the other sections.

Define F}, and Fy as the net vertical fluxes in the top left and top right quadrants of
the field in figure 124, then under the mapping £}, - p(1 — o) Fy, and Fy — p(o— 1) Fy.
As the map is iterated the fluxes F}, and Fy grow exponentially if o = —1, because
of constructive folding. If o = 1 the folding is not constructive and the fluxes become
zero after one iteration. Despite the crudeness of the model, this corresponds closely
to the ABCS flow, where there is growth of field for representations II and IV, which
have o = —1, and very weak or no growth for representations I and III.

Finally, consider the two-dimensional representation V, which has been postponed
up to now since our numerical results are difficult to interpret. This representation
oceurs twice in the vector space L. Given a general field B define two pairs of fields:

BY! = B—r?[B]+ s[B]—r%s[B],
BY! = y[B]— %[ B]+ rs[B]—r%s[B],
and BY? = —r[B]+ %[ B] + rs| B]—r*s[ B],
BY? = B—r*[B]—s[B]+r%s[B];
each of these pairs spans a vector space which is invariant under the group action.

For each pair the action of an element ¢ is described by a matrix D(g):

2
g[B)] = Z B, Dylg).
k=1
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Figure 13. Mean vertical magnetic field B,, with the average taken over line A of figure 35, plotted
against time; an average over 2'® points is shown by the solid lines, and over 27 points by the
dashed lines. The initial condition is given by (21) in (a) and (22) in ().

The matrices D(g) are given explicitly by

pir=(y 1) pi=(i ) pea=(51 L) pe=(C )

_ 0o -
D(8)=((1) _01), D(rs)=((1) (1)) D(728)=(01 (1)) D”%):(—l 01)'

The characters of the representation given in table 1 are the traces of the matrices.

Before giving numerical results, consider the crude baker’s map model (4BCS 2) of
a stretch—fold—cut—paste dynamo introduced earlier and recall that for represen-
tations I to IV, fields that are odd under s grow, while fields that are even show
weak or no growth. A field of the form B} has a mixed character; BY is even under
s, while 7[BY] = By is odd. In other words the field B} is even under rotation of the
section P(+e,) (by s), but odd under similar rotations of P(+e,) (by 7%s). In the
context of the ABCS 2 model an initial field BY is represented by taking an even field
on PO(+e,):

B, 2, t+e,,0) = (sB,) (,2, +e,,0) = —B,(—y, —z, +e,,0),
but an odd field on P®(+e,):
B,(Yr, 2, +e,,0) = —(r’B,) (2, +e,,0) = B,(—, —z+2, Te,,0).

— %y

Now note that as the ABCS 2 map is iterated, even fields are never mixed with odd
fields, i.e. for m even (odd respectively) B,(¥,z, +e,,m) is always even (odd) under
s, while B,(,z, +e,,m) is always odd (even) under 7%s. It follows from the previous
discussion of the model that the odd fields should show clear growth, while the even
fields show no growth.

Something broadly similar appears to happen in the ABCS flow. For initial
conditions of the form BY, there is clear growth of B, when averaged along line B of
figure 3b, but when averaged along lines A or C there is noisy behaviour, and weak
or no growth. For fields of the form B} there is clean growth for lines A and C, but
weak or no growth for line B. An example is the pair of initial conditions:

BY(x,0) = (0, sin (224/2),0), (21)
BY(x,0) = (sin (22/2),0,0), (22)

which are related by a rotation r. Figure 13a, b shows the growth of B,, with the
average taken along line A of figure 3b for these two initial conditions.
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We do not have a simple explanation for this somewhat bizarre behaviour.
However, the baker’s map model and the numerical results suggest that the chaotic
web in the ABCS flow splits (at least approximately) into two distinct regions related
by the symmetry r. In one region, which includes line B of figure 3b, BY fields are
amplified strongly, but not By fields; in the other region, which includes lines A and
C, BY fields are amplified strongly and not BY fields. If weak magnetic diffusion is
introduced, the dynamo eigenfunctions belonging to representation V can again be
split up into pairs BY and BJ. Our numerical results suggest that these may be
localized only in certain regions of the chaotic web.

8. Numerical methods for ABC flows

We now return to the ABC flows (2) and seek evidence for constructive folding and
fast dynamo action. To find the field at a point x; at time 7', follow the motion of a
particle backwards in time from this point; letting o = 7'—¢, integrate x(c) by

0,x =—u(x), x(0)=x;
from a =0 to & = 7' to obtain x, = x(7'). Also define the jacobian

J;

i

(@) = 02;(0)/0uy(e)
and integrate it according to

Oudy = Jup Sy, Jy(0) = 0y,
where S,;(a) = 0, u;(x(t)). The Cauchy solution is then

By(x,,t=1T) =,

(1) By(xy,t = 0).

An alternative method is to exploit the fact that the flow is steady and resolve field
parallel and transverse to streamlines; this leads to some simplifications as for the
ABCS flow. Given a vector field a(ax) = a(x(«)) defined along the streamline x(c),
define

Fa=203,a+a"S.

If the vector field is generated by carrying a vector frozen in the fluid along the
streamline, then %a = 0. An example is the flow itself, which satisfies Lu = 0. To
find the field at a point x; at time 7', begin by defining a right-handed orthogonal
basis {u;,v,,w,} at this point with u; = u(x,), and set v(x;) = v, and w(x,) = w,.
Suppose we freeze v and w in the flow, setting Lv = ¥w = 0 along the streamline.
The components of field in the basis {u, v, w} are then conserved when a frozen field
vector is carried along the streamline. Thus the components of the final field are
given simply by resolving the initial field onto the basis {u, v, w} at the point x,. This
method, however, is not ideal, since as the basis is carried in the flow, the angles
between the basis vectors decrease exponentially, and at x,, there will be large errors
in calculating the components of the initial field in the basis. It is more convenient
to carry the vectors along the streamline in such a way as to keep the basis
orthogonal, and so we define v, and w, by

=v,+Au, w=w, +uutvo,
Phil. Trans. R. Soc. Lond. A (1992)
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with u-v, =u-w, =v,-w, =0. The vectors v, and w, and the scalars A, x4 and v
evolve along the streamline according to:

gUJ_:—u@aA, gwlz_u(ﬁaﬂ_vaaA)—_vlaaV’
0, A = —ur(S+ST) v jut, Ou—vO,A=—u (S+ST)w jut | (23)
0, v=—v,(S+S87)-w, /o}.

Ata=0setv, =v, w, =w,and A = 4 =v = 0. At « = T when x = x,, resolve the
initial field onto the basis by writing By = B, u+B,v, + B, w,. The result of carrying
this vector in the flow to x, is

Bl = (Bu—/\Bv-‘(/“"VA)Bw) u1+(Bv—VBw) U +Bw W;. (24)

There is some redundancy in this method; u-v, xw, = V; is constant along a
streamline, as the flow is volume preserving and so w, may be eliminated by writing
w, = (uxv,)(V,/u*v?). Furthermore, as in the ABCS flow, the field component B,
along streamlines is slaved to the transverse components B,, B,,. Thus we shall focus
solely on the transverse components, and so need only integrate the equations for v,
and v back along a streamline.

9. Results for the ABC flow with A =B=C=1

In this section we study magnetic field evolution in the ABC flow with 4 = B =
C =1, which possesses the symmetries listed in Appendix B. The flow also has a
network of stagnation points joined by separatrices, as discussed by Childress &
Soward (1985). Consider a Poincaré section in the flow that intersects the separatrix
joining the stagnation points at (—im)(1,1,1) and (r)(1,1,1). Define coordinates
(#,9,2) by

x = c+Ze;+ge;+Ze;
= (gm) (1, L, 1)+ (&/v/2) (=1, 1,0)+(F/v6) (=1, —1,2)+(Z/v/3)(1,1,1); (25)

so that the section is given by Z = 0. Figure 14 shows part of the section given by
|Z] < 0.15 and || < 0.15; the separatrix intersects the section at its centre £ = § = 0
and the flow has three-fold symmetry about this point.

The second method of §8 is used to evolve field in the flow. At each point on the
section define a vector radial to the separatrix, v = &e;+ je;; project this vector
perpendicular to u, and normalize it to unit length to obtain v,. This vector is
approximately radial to the separatrix, as the flow is mostly in the e; direction. Now
integrate v, and v back along streamlines using (23) and then calculate the final
transverse field from (24). The initial field giving the clearest evidence for
constructive folding in the flow is

B(x,0) = (sinz— cos y, sin & — cos 2, 8in y — coS X), (26)

which belongs to the one-dimensional representation labelled II in Appendix B.
Pictures giving graphical evidence for constructive folding of the B, component field
are presented in Gilbert (1991). To confirm this we calculate the average radial field
component B, along the line marked A in figure 14; this quantity is plotted in figure
15a and there is clear exponential growth with oscillations (Gilbert 1991). The
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Figure 14. Poincaré section of the ABC flow with 4 = B = C = 1, given by |# < 0.15 and |§]| < 0.15
The line A is given by 0 < & < 0.075, § = 0.075.
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Figure 15. Mean magnetic field B, averaged over line A of figure 14 plotted against time. The
initial conditions are (@) equation (26) and (b) equation (27).

growth rate here is approximately 0.05. It was not possible to follow this growth for
very long periods of time, partly because of the expense of integrating back along
streamlines with sufficient accuracy, and partly because of the difficulty of resolving
fine enough scales to obtain the average B, ; the reason is that the fine sheets of field
thrown off the three-dimensional hyperbolic stagnation points contain strong
transverse field and it is necessary to resolve these. This resolution problem was
absent in the ABCS flow, because the stagnation points are essentially two-
dimensional, lying in degenerate rows, and so do not generate strong transverse
fields. For the solid line in figure 15a 14000 points spaced unequally (and down to
as little as 107® apart) along the line were used to calculate the average, while for the
dashed line 4000 points were used. There is thus again clear evidence of constructive
folding. As in the ABCS model the field along streamlines is much stronger than the
transverse field, although slaved to the transverse field.

Several initial conditions for each of the five representations of the symmetry
group (see Appendix B) were used. Representation I gives only noisy behaviour and
weak or no growth, but for the remaining representations initial conditions were
found giving clear growth. An example for representation III is

B(x,0) = (2s8inz+2cosy, —sinx—cosz, —sin y —cos &), (27)

and the growth in B, is shown in figure 15b. All the growth rates observed are
approximately the same, around 0.04 and 0.05. We considered several initial fields
from each representation and found evidence that different initial fields belonging to
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Magnetic field evolution 651

the same representation may have similar growth rates but different frequencies of
oscillation, as for the ABCS flow. However, because of the difficulty in resolving the
average fields accurately over long times, we were unable to conduct a very complete
survey.

It is interesting to compare these results with the results of Arnold & Korkina
(1983) and Galloway & Frisch (1986). In the first window of dynamo action 9 < R,, <
17.5, the fastest growing eigenmode belongs to the representation 11, while in the
second window the eigenmode belongs to representation V and at R,, = 550 has a
growth rate of about 0.08. Thus our growth rates are comparable to those observed
in Galloway & Frisch (1986) although somewhat smaller, and our calculations
suggest that at sufficiently high magnetic Reynolds numbers, eigenmodes belonging
to representations 1I to V should be unstable. Possible discrepancies between our
results and numerical calculations at large finite R, (D.J. Galloway, personal
communication) may be because R,, is not sufficiently large. This problem is
particularly acute for the 4 = B = (' = 1 case since the chaotic regions occupy only
a small volume of space; large values of R,, and correspondingly fine numerical grids
(Moffatt & Proctor 1985) are necessary to allow the field to develop structure within
chaotic regions.

10. Discussion

We have approached the fast dynamo problem by studying the evolution of
magnetic field in steady chaotic flows for the case of zero magnetic diffusion. This
approach has the advantage that the Cauchy solution may be used to follow
magnetic field vectors and so the evolution of field in small regions of the flow may
be studied without employing a fine three-dimensional grid. Two flows were studied,
an ABC flow and a model flow, the ABCS flow, which is constructed by patching
together simple flows. The action of the chaos in each flow is to stretch and fold
magnetic field, generating fine-scale structure. However, for both flows constructive
folding is observed : there is exponential growth of magnetic field averaged over parts
of the chaotic web, implying that there is persistent structure in the growing field on
the scale of the web. The evidence for this is particularly clear for the ABCS flow,
which is designed to allow field to be followed inexpensively over long periods of time.
Since the principal effect of weak diffusion is to smooth field locally, the constructive
folding seen is suggestive of fast dynamo action in these flows. This is still a tentative
conclusion as no rigorous results are known about the relation between the case of
zero magnetic diffusion and the fast dynamo problem for flows of any complexity.
However, a connection can be made in certain idealized models; for the
stretch—fold—shear model (Bayly & Childress 1989; Finn et al. 1991) and certain
hyperbolic maps (Klapper 1992b) exponential growth in averaged field at zero
magnetic diffusion does imply fast dynamo action.

The ABC and ABCS flows possess symmetries, and magnetic fields belonging to
different representations of the appropriate symmetry group generally have different
growth rates. Several initial conditions belonging to each representation were
studied; these appear to have the same growth rate, but may have different
frequencies of oscillation, depending on the degree of spatial structure in the initial
condition. This degeneracy would presumably be removed if weak diffusion were
introduced. Initial conditions belonging to the two-dimensional representation
showed growth in some regions of the chaotic web and not in others, suggesting that
with diffusion the corresponding eigenfunctions may be localized only in certain
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parts of the web. Possible dynamo mechanisms for the 4BCS flow were studied. 1t
appears that the cutting and pasting of streams of fluid at the rows of X-points is
important in allowing field to be folded constructively in the web. An illustrative
model of a dynamo based on this process, together with stretching and folding, was
introduced ; the model reproduces some qualitative features of dynamo action in the
ABCS flow.

Certain qualitative effects are absent from our simulations because we have taken
the magnetic diffusivity to be exactly zero. Field from the chaotic regions cannot
penetrate the islands in the web. If the flow in the islands were completely laminar
and there were weak diffusion, field would simply be expelled (Weiss 1966) or
amplified by slow dynamo mechanisms (see Soward 1990 and references therein).
Although there are likely to be fine bands of chaos within the islands, the chaotic
stretching here is very weak, and thus any diffusive leakage of field in and out of the
islands is unlikely to affect the growth of field within the chaotic web itself. Another
effect of diffusion, absent from our simulations, is to convert components of field
along streamlines into transverse field.

Our results may be contrasted and compared with previous studies of laminar and
chaotic ABC dynamos. The laminar flow with 4 = B =1 and C = 0 (Roberts 1972)
is analysed by Soward (1987) and termed a ‘nearly fast’ dynamo, as the maximum
growth rate decreases only as InlnR,, /InR,,. There is no chaos in the flow, and
exponential stretching occurs only at isolated rows of stagnation points. Field
transverse to streamlines is stretched out at each row of stagnation points into a fine
sheet of flux and then sheared and twisted in the flow (Soward 1987). Now the
stretching at stagnation points generates only the field component parallel to
streamlines ; diffusion acts to convert this back to transverse field and so complete
the cycle of field amplification. This diffusive mechanism is absent in our study of
chaotic stretching and folding; similarly the chaotic stretching and folding in the
flows we have studied is absent in a laminar flow. Our study therefore has little
overlap with the analytical study of laminar flows by Soward (1987); the dynamo
mechanisms are quite different, and one can only speculate as to how they interact
when both are present in a steady chaotic flow at large but finite magnetic Reynolds
numbers.

Indeed our results for chaotic flows do differ from those of Soward (1987) for
laminar flows in several ways, and have more in common with the studies of Arnold
& Korkina (1983) and Galloway & Frisch (1986), who examine the chaotic case 4 =
B = C =1 for magnetic Reynolds numbers up to 550. Soward finds steady growth of
magnetic field modes with negative helicity, this being typical of a*-dynamos. We
generally observe oscillatory growth of field, as do Galloway & Frisch (except at very
large R,). We also observe growth of magnetic fields possessing a certain symmetry,
independent of their helicity. For example the initial fields in (16) and (17) have the
same helicity, being translates of each other, but only one shows clear growth. A
similar situation arises in the study of Galloway & Frisch; in the first window of
dynamo action the magnetic field has negative helicity in the modes of largest scale,
whereas in the second window, after the symmetry breaking, the large-scale field has
positive helicity.

Further simulations of dynamo action in ABC flows at large but finite magnetic
Reynolds numbers would clearly be valuable. A detailed comparison of the field
structure between simulations with and without diffusion in this and other steady
flows (Galloway & Proctor 1992) could lead to a better understanding of the effects
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of diffusive reconnection and how it differs from the averaging we have used (see
Klapper 1992b). Finally, it is important to clarify the roles of helicity (and its
distribution over different scales) and symmetry in these dynamos.

I am grateful to U. Frisch, who suggested this general line of research and, together with S.
Childress, made many key contributions during its progress. I have enjoyed many valuable
discussions with V.I. Arnold, B.J. Bayly, A. A. Chernikov, D.J. Galloway, I. Klapper, H. K.
Moffatt, M. R. E. Proctor, A. V. Rogalsky, S.I. Vainshtein, M. M. Vishik and V. Zheligovsky. I
am also grateful to the staff of the Observatoire de Nice, the Courant Institute of Mathematical
Sciences and the Woods Hole Oceanographic Institution 1990 Summer Program in Geophysical
Fluid Dynamics for their hospitality. This work was supported by Gonville & Caius College,
Cambridge, EC contract ST-2J-0029-1-F and NASA contract NAGW-781. S. P. Cooper and the
Atmospheric Dynamics Group of D.A.M.T.P. generously made available the software package that
was used to produce figure 4.

Appendix A

In §4 it is shown how to move a frozen vector from an initial point in an S-region
to a Poincaré section; this appendix gives the modifications required if the initial
point lies in an X-region. Define Poincaré sections P, (n, ) in an X-region X(n,e) by
the planes 1—Z = + 7 in local coordinates (Z, 7,7, n,e). Each orbit passing through
the X-region intersects one of these planes. The map taking a particle from a section
P(n,e) to one of P, (n,e) is:

(h.C7.n.e) = Myp(f.C7om e),
where v=vy+qle), {=C+3d(), T=7+T({)
The particle lands on P, (n,e) if ;& > 0, otherwise it lands on P_(n, e).

Now omit the carets and suppose that a particle crosses P, or P_ with coordinates
(¥, &, 7,n,e); if the particle still lies in the X-region at time ¢ its position in local
cartesian coordinates at this time is given by

(E’ ?7’ Z7 n7 e) = Mgl"(‘ﬁ? €5 T7 n? e)’
with Z=mn—d@)e (t—7)/y, §=fW)dW)e =7y, z=L{+(=7)v2¥,
where dy) = Vyyl, e(t) = 1/e7(t) = exp(yt), f(Y)= sign(¥)).
If a particle travels from an initial point x, in an X-region, to the point x in an
S-region at time ¢, then

x(xy) =Me oM 0(Mpp) o (Myp)™ o (M%) o(Mep) ™" X, (A1)

analogously to (12). Similar formulae apply for particles travelling from an S-region
or X-region to an X-region. Differentiating

0x/0xy = Jop T (Tpp)" (Txp) o (J%) ™ (Jer) ™ (A2)

the new jacobians being given by

A, 1 q/ O
Top= 20060 (g 4 gy 0)
a(w’ §7 T) %T/ %T/q/ 1
o —fe /2d 0 —de”
and TO, = g—((;?é—j) | etj2a 0 —fae

(t—m)v2 1 —+/2¢
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Table 2. Character table for the symmetry group of the ABC flow with A =B =C =1
x(9) E Cy C3 C, Cs
I 1 1 1 1 1
II 1 1 1 -1 -1
111 2 —1 2 0 0
v 3 0o -1 1 -1
\% 3 o -1 -1 1

Appendix B

This appendix gives the time-preserving symmetries of the ABC flow in the case
A =B =C =1, when the symmetry group is isomorphic to the symmetry group of
the cube without reflections (Arnold & Korkina 1983; Arnold 1984 ; Dombre et al.
1986). The group contains the elements

i(x) = (x,y,2), e(x) = (—z,t—x,y+m),
a(x) = n—y,x+1in,2—3in), ei(x)=(T—y,z+m, —2x),
a*(x) = (—x,T—y,z+T), f(x)=(z+m, —x,T—y),
a*(x) = (y—3m,m—,2+3m), fix) = (—y,n—z2+7W),
b(x) = (x—3m,3m—z,y+im), ¢g(x) = (T—z,2+T, —y),
b*(x) = (x+m, —y, m—2), g (x) = (y+m, —z,ﬂ—x),
b3(x) = (x+in,z—in,in—y), h(x)= (En—z,z+1in,y—1in),
¢(x) = (z+3m, y—3m,3n—2), j(X) = (z—3m, 35—y, x+ 275)
A(x) = (n—a,y+m, —2), k(x) = (y +3m, x—3m, 3T —2),
A(x) = (n—zy+m,a—gm), Ux)=(—r—§m, —2—3m, —y—3m),
d(x) = (z,2,y), m(x) = (—z—3m, —y —3T, —T—3M),
d*(x), = (y,2,2) n(x) = (—y—3m, —x—3M, —2—3M);

note that the elements b* and d* correspond to the elements g, and g, of Arnold
(1984).
There are five conjugacy classes,

E={}, C,={dd*ee’ff%g,9% O%={a%b%c%,
Oy ={h,j, k,l,m,n}, C,={a,a®b,b?c,c,

and the character table is given in table 2 (see, for example, Hamermesh 1962). In
the case 4 = B # C, the symmetry group is reduced to Dy, containing the elements
{i,a,a® a® b% k,c? n}. Finally if 4, B and C are all unequal, the symmetry group is
D, and contains the elements i, a? b and c?, which correspond to the symmetries
I,8,8;, 8;8, and 8, 8,, respectively, of Dombre et al. (1986).
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igure 4. Evolution of magnetic field from the initial condition (16). In (a—c) the area of
(0,e ) shown is that depicted in figure 3a while in (d—f ) 1t is that in figure 3b. The vertical

lagnetic field B, 1s coded as described in the text, with positive B, shown in red and
2gative in blue. In (a) t =20, (b) t= 150, (¢)t=90,(d)t=90, (e)t=130and ( f )t = 180.
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